Search results for "Hall ray"

showing 2 items of 2 documents

Prescribing the behaviour of geodesics in negative curvature

2010

Given a family of (almost) disjoint strictly convex subsets of a complete negatively curved Riemannian manifold M, such as balls, horoballs, tubular neighborhoods of totally geodesic submanifolds, etc, the aim of this paper is to construct geodesic rays or lines in M which have exactly once an exactly prescribed (big enough) penetration in one of them, and otherwise avoid (or do not enter too much in) them. Several applications are given, including a definite improvement of the unclouding problem of [PP1], the prescription of heights of geodesic lines in a finite volume such M, or of spiraling times around a closed geodesic in a closed such M. We also prove that the Hall ray phenomenon desc…

Mathematics - Differential GeometryhoroballsPure mathematicsGeodesicDisjoint setsLagrange spectrum52A5501 natural sciences53C22Mathematics - Metric Geometry0103 physical sciences0101 mathematicshoroball[MATH.MATH-MG]Mathematics [math]/Metric Geometry [math.MG]MathematicsFinite volume methodHall rayAMS : 53 C 22 11 J 06 52 A 55 53 D 25Mathematics - Number Theory010102 general mathematicsnegative curvatureRiemannian manifold[MATH.MATH-NT]Mathematics [math]/Number Theory [math.NT]Closed geodesic53D25[MATH.MATH-DG]Mathematics [math]/Differential Geometry [math.DG]Totally geodesic010307 mathematical physicsGeometry and TopologyNegative curvatureMathematics::Differential GeometryConvex functiongeodesicgeodesics11J06
researchProduct

On the nonarchimedean quadratic Lagrange spectra

2018

We study Diophantine approximation in completions of functions fields over finite fields, and in particular in fields of formal Laurent series over finite fields. We introduce a Lagrange spectrum for the approximation by orbits of quadratic irrationals under the modular group. We give nonarchimedean analogs of various well known results in the real case: the closedness and boundedness of the Lagrange spectrum, the existence of a Hall ray, as well as computations of various Hurwitz constants. We use geometric methods of group actions on Bruhat-Tits trees. peerReviewed

Pure mathematicscontinued fraction expansionGeneral MathematicsLaurent seriesLagrange spectrumDiophantine approximationalgebra01 natural sciences[MATH.MATH-GR]Mathematics [math]/Group Theory [math.GR]Group actionQuadratic equationModular group0103 physical sciences0101 mathematicsquadratic irrationalContinued fractionMathematicslukuteoriaMathematics - Number TheoryHall ray010102 general mathematicsSpectrum (functional analysis)ryhmäteoriapositive characteristicformal Laurent series[MATH.MATH-NT]Mathematics [math]/Number Theory [math.NT]Finite fieldHurwitz constantAMS codes: 11J06 11J70 11R11 20E08 20G25010307 mathematical physics11J06 11J70 11R11 20E08 20G25
researchProduct